
Allen D. Malony, Sameer Shende, Robert Ansell-Bell

{malony,sameer,bertie}@cs.uoregon.edu

Computer & Information Science Department

Computational Science Institute

University of Oregon

Parallel Program Analysis Framework
for the DOE ACTS Toolkit

May 9, 2001 NERSC DOE ACTS Workshop

Talk Outline

r Project Goals and Challenges

r Computation Model for Performance Technology

r TAU Performance Framework
¦ TAU architecture and performance system toolkit

r TAU Application Scenarios
¦ Instrumentation examples

¦ Object-oriented template libraries

¦ Multi-level and asynchronous parallelism

¦ Virtual machine execution

¦ Hierarchical, hybrid parallel systems

r Future Plans and Conclusions

May 9, 2001 NERSC DOE ACTS Workshop

Performance Needs ÆÆPerformance Technology

r Observe/analyze/understand performance behavior
¦ Multiple levels of software and hardware

¦ Different types and detail of performance data

¦ Alternative performance problem solving methods

¦ Multiple targets of software and system application

r Robust AND ubiquitous performance technology
¦ Broad scope of performance observability

¦ Flexible and configurable mechanisms

¦ Technology integration and extension

¦ Cross-platform portability

¦ Open layered and modular framework architecture

May 9, 2001 NERSC DOE ACTS Workshop

Complexity Challenges

r Computing system environment complexity
¦ Observation integration and optimization

¦ Access, accuracy, and granularity constraints

¦ Diverse/specialized observation capabilities/technology

¦ Restricted modes limit performance problem solving

r Sophisticated software development environments
¦ Programming paradigms and performance models

¦ Performance data mapping to software abstractions

¦ Uniformity of performance abstraction across platforms

¦ Rich observation capabilities and flexible configuration

¦ Common performance problem solving methods

May 9, 2001 NERSC DOE ACTS Workshop

General Problem

How do we create robust and ubiquitous
performance technology for the analysis and tuning
of parallel and distributed software and systems in
the presence of (evolving) complexity challenges?

May 9, 2001 NERSC DOE ACTS Workshop

Computation Model for Performance Technology

r How to address dual performance technology goals?
¦ Robust capabilities + widely available methodologies

¦ Contend with problems of system diversity

¦ Flexible tool composition/configuration/integration

r Approaches
¦ Restrict computation types / performance problems
Ø limited performance technology coverage

¦ Base technology on abstract computation model
Ø general architecture and software execution features

Ømap features/methods to existing complex system types

Ø develop capabilities that can adapt and be optimized

May 9, 2001 NERSC DOE ACTS Workshop

General Complex System Computation Model

r Node: physically distinct shared memory machine
¦ Message passing node interconnection network

r Context: distinct virtual memory space within node

r Thread: execution threads (user/system) in context

memory

�

memory

�

Node Node Node

VM
space

Context

SMP

Threads

node memory

£
…

…

Network

May 9, 2001 NERSC DOE ACTS Workshop

TAU Performance Framework

r Tuning and Analysis Utilities

r Performance system framework for scalable parallel
and distributed high-performance computing

r Targets a general complex system computation model
¦ nodes / contexts / threads
¦ multi-level: system / software / parallelism

¦ measurement and analysis abstraction

r Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
¦ portable performance profiling/tracing facility

¦ open software approach

May 9, 2001 NERSC DOE ACTS Workshop

Targeted Research Areas

r Performance analysis for scalable parallel systems
targeting multiple programming and system levels
and the mapping between levels

r Program code analysis for multiple languages
enabling development of new source-based tools

r Integration and interoperation support for building
analysis tool frameworks and environments

r Runtime tool interaction for dynamic monitoring and
adaptive applications

May 9, 2001 NERSC DOE ACTS Workshop

TAU Architecture

Dynamic

May 9, 2001 NERSC DOE ACTS Workshop

TAU Instrumentation

r Flexible, multiple instrumentation mechanisms
¦ Source code
Ømanual

Ø automatic using PDT (tau_instrumentor)

¦ Object code
Ø pre-instrumented libraries (e.g., POOMA)

Ø statically linked (e.g., MPI wrapper library)

Ø dynamically linked (e.g., JVM profiling interface)

¦ Executable code
Ø dynamic instrumentation using DynInstAPI (tau_run)

¦ Virtual machine

May 9, 2001 NERSC DOE ACTS Workshop

TAU Instrumentation (continued)

r Common target measurement interface (TAU API)

r C++ (object-based) design and implementation
¦ Macro-based, using constructor/destructor techniques

¦ Function, classes, and templates

¦ Uniquely identify functions and templates
Ø name and type signature (name registration)

Ø static object creates performance entry

Ø dynamic object receives static object pointer

Ø runtime type identification for template instantiations

¦ C and Fortran instrumentation variants

r Instrumentation and measurement optimization

May 9, 2001 NERSC DOE ACTS Workshop

TAU Measurement

r Performance information
¦ High resolution timer library (real-time / virtual clocks)

¦ Generalized software counter library

¦ Hardware performance counters
ØPCL (Performance Counter Library) (ZAM, Germany)

ØPAPI (Performance API) (UTK, Ptools Consortium)

Ø consistent, portable API

r Organization
¦ Node, context, thread levels

¦ Profile groups for collective events (runtime selective)

¦ Mapping between software levels

May 9, 2001 NERSC DOE ACTS Workshop

TAU Measurement (continued)

r Profiling
¦ Function-level, block-level, statement-level

¦ Supports user-defined events

¦ TAU profile (function) database (PD)

¦ Function callstack

¦ Hardware counts instead of time

r Tracing
¦ Profile-level events

¦ Interprocess communication events

¦ Timestamp synchronization

r User-controlled configuration (configure)

May 9, 2001 NERSC DOE ACTS Workshop

What Data Can TAU Generate?

r Time spent exclusively and inclusively in each function.

r Number of times each function called.

r Number of profiled functions (subroutines) it called.

r Function mean time/call on all nodes/contexts/threads.

r Exclusive/inclusive time for each function invocation.

r Hardware counts: flops, instructions issued, cycles.

r Communication functions only or communication + I/O.

r Statement-level and block-level profiling.

r Profile statistics such as exclusive time standard deviation.

May 9, 2001 NERSC DOE ACTS Workshop

TAU Measurement API

r Configuration
¦ TAU_PROFILE_INIT(argc, argv);

TAU_PROFILE_SET_NODE(myNode);
TAU_PROFILE_SET_CONTEXT(myContext);
TAU_PROFILE_EXIT(message);

r Function and class methods
¦ TAU_PROFILE(name, type, group);

r Template
¦ TAU_TYPE_STRING(variable, type);

TAU_PROFILE(name, type, group);
CT(variable);

r User-defined timing
¦ TAU_PROFILE_TIMER(timer, name, type, group);

TAU_PROFILE_START(timer);
TAU_PROFILE_STOP(timer);

May 9, 2001 NERSC DOE ACTS Workshop

TAU Measurement API (continued)

r User-defined events
¦ TAU_REGISTER_EVENT(variable, event_name);

TAU_EVENT(variable, value);
TAU_PROFILE_STMT(statement);

r Mapping
¦ TAU_MAPPING(statement, key);

TAU_MAPPING_OBJECT(funcIdVar);
TAU_MAPPING_LINK(funcIdVar, key);

¦ TAU_MAPPING_PROFILE (FuncIdVar);
TAU_MAPPING_PROFILE_TIMER(timer, FuncIdVar);
TAU_MAPPING_PROFILE_START(timer);
TAU_MAPPING_PROFILE_STOP(timer);

r Reporting
¦ TAU_REPORT_STATISTICS();

TAU_REPORT_THREAD_STATISTICS();

May 9, 2001 NERSC DOE ACTS Workshop

TAU Profile Groups (examples)

Profile Group Description Example
TAU_DEFAULT All profile groups --profile

TAU_MESSAGE Message Class --profile message

TAU_PETE PETE --profile pete+message

TAU_IO IO functions --profile io

TAU_FIELD Field functions --profile field+viz

TAU_LAYOUT Field layout --profile layout

TAU_MESHES Meshes --profile sub+meshes

TAU_PARTICLE Particle --profile io+particle

TAU_USER User defined --profile user

May 9, 2001 NERSC DOE ACTS Workshop

Timing of Multi-threaded Applications

r Capture timing information on per thread basis

r Two alternative
¦ Wall clock time
Øworks on all systems

Ø user-level measurement

¦ OS-maintained CPU time (e.g., Solaris, Linux)
Ø thread virtual time measurement

r TAU supports both alternatives
¦ CPUTIME module profiles user+system time

r PAPI thread timing

May 9, 2001 NERSC DOE ACTS Workshop

TAU Analysis

r Profile analysis
¦ Pprof
Ø parallel profiler with texted based display

¦ Racy
Ø graphical interface to pprof

r Trace analysis
¦ Trace merging and clock adjustment (if necessary)

¦ Trace format conversion (ALOG, SDDF, PV, Vampir)

¦ Vampir (Pallas)

May 9, 2001 NERSC DOE ACTS Workshop

Using PPROF

May 9, 2001 NERSC DOE ACTS Workshop

Using RACY

Bargraph function profile

Click middle mouse button over n,c,t 0,0,0 to see
the textual profile of node 0, context 0, thread 0

May 9, 2001 NERSC DOE ACTS Workshop

Using RACY (continued)

Click the third mouse button over a function
to highlight it in all racy windows.

May 9, 2001 NERSC DOE ACTS Workshop

Using RACY (continued)

Selected Function Profile

Node Profile

May 9, 2001 NERSC DOE ACTS Workshop

TAU Status

r Usage (selective)
¦ Platforms
Ø IBM SP, SGI Origin 2K, Intel Teraflop, Cray T3E, HP, Sun,

Windows 95/98/NT, Alpha/Pentium Linux cluster, IA-64

¦ Languages
ØC, C++, Fortran 77/90, HPF, pC++, HPC++, Java, OpenMP

¦ Communication libraries
ØMPI, PVM, Nexus, Tulip, ACLMPL

¦ Thread libraries
Ø pthreads, Tulip, SMARTS, Java,Windows

¦ Compilers
ØKAI, PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray, IBM

May 9, 2001 NERSC DOE ACTS Workshop

TAU Status (continued)

¦ Application libraries
ØBlitz++, A++/P++, ACLVIS, PAWS

¦ Application frameworks
ØPOOMA, POOMA-2, MC++, Conejo, PaRP

¦ Other projects
ØACPC, University of Vienna: Opus/HPF

ØKAI and Pallas: OpenMP/MPI

r TAU profiling and tracing toolkit (Version 2.8)

r Extensive 70-page TAU User’s Guide

r http://www.acl.lanl.gov/tau

r http://www.cs.uoregon.edu/research/paracomp/tau

May 9, 2001 NERSC DOE ACTS Workshop

TAU Application Scenarios

r Instrumentation examples
¦ Instrumentation of C++ source and templates

¦ Instrumentation of multi-threaded code

r Object-oriented (C++) template libraries
¦ Template-derived code performance measurement

¦ Array classes and expression transformation

¦ Source code performance mapping

r Multi-level and asynchronous computation
¦ Multi-threaded parallel execution

¦ Asynchronous runtime system scheduling

¦ Parallel performance mapping

May 9, 2001 NERSC DOE ACTS Workshop

TAU Application Scenarios (continued)

r Hardware performance measurement
¦ Integration of external performance technology

¦ Cross-platform hardware counter API

r Virtual machine execution
¦ Abstract thread-based performance measurement

¦ Performance measurement integration in virtual machine

r Hierarchical, hybrid (mixed model) parallel systems
¦ Portable shared memory and message passing APIs

¦ Combined task and data parallel execution

¦ Performance system configuration and model mapping

May 9, 2001 NERSC DOE ACTS Workshop

C++ Instrumentation Using TAU API

int main(int argc, char **argv)

{

TAU_PROFILE(“main()”, “int (int, char **)” TAU_DEFAULT);

TAU_PROFILE_TIMER(ft, “For-loop-main”, “ “, TAU_USER);

TAU_PROFILE_START(ft);

for (int j = 0; j < N; j++)

{

cout <<“Something…”<<endl;

}

TAU_PROFILE_STOP(ft);

} // routines & methods need just one TAU_PROFILE

May 9, 2001 NERSC DOE ACTS Workshop

Instrumentation of C++ Templates Using TAU API

template<class T, unsigned Dim, class M, class C>

void Field<T,Dim,M,C>::initialize(

Mesh_t& m,
FieldLayout<Dim>& l, const Bconds<T,Dim,M,C>& bc,

const GuardCellSizes<Dim>& gc)

{

TAU_TYPE_STRING(taustr, “void (Mesh_t,” +CT(l) + “, “ +
CT(bc)+ “, “ + CT(gc) + “)”);

TAU_PROFILE(“Field::initialize()”, taustr, TAU_USER);

BareField<T,Dim>::initialize(l,gc);

store_mesh(&m, false);

}

May 9, 2001 NERSC DOE ACTS Workshop

Multi-threaded Instrumentation Using TAU API

void *threaded_func (void *data)

{

TAU_REGISTER_THREAD();

TAU_PROFILE(“threaded_func()”, “void * (void *)”,
TAU_DEFAULT);

// do work here …

}

int main()

{

TAU_PROFILE(“main()”, “int ()”, TAU_DEFAULT);

ret = pthread_create(&tid, NULL, threaded_func, NULL);

// …

}

May 9, 2001 NERSC DOE ACTS Workshop

C++ Template Instrumentation (Blitz++, PETE)

r High-level objects
¦ Array classes

¦ Templates (Blitz++)

r Optimizations
¦ Array processing

¦ Expressions (PETE)

r Relate performance
data to high-level
statement

r Complexity of
template evaluation

Array expressions

May 9, 2001 NERSC DOE ACTS Workshop

Standard Template Instrumentation Difficulties

r Instantiated templates result in mangled identifiers

r Standard profiling techniques / tools are deficient
¦ Integrated with proprietary compilers

¦ Specific systems platforms and programming models

Uninterpretable routine names

May 9, 2001 NERSC DOE ACTS Workshop

TAU Instrumentation and Profiling

Performance data presented
with respect to high-level
array expression types

Profile of
expression
types

Graphical pprof

May 9, 2001 NERSC DOE ACTS Workshop

TAU and SMARTS: Asynchronous Performance

r Scalable Multithreaded Asynchronuous RTS
¦ User-level threads, light-weight virtual processors

¦ Macro-dataflow, asynchronous execution interleaving
iterates from data-parallel statements

¦ Integrated with POOMA II (parallel dense array library)

r Measurement of asynchronous parallel execution
¦ Utilized the TAU mapping API

¦ Associate iterate performance with data parallel statement

¦ Evaluate different scheduling policies

r “SMARTS: Exploting Temporal Locality and Parallelism
through Vertical Execution” (ICS '99)

May 9, 2001 NERSC DOE ACTS Workshop

TAU Mapping of Asynchronous Execution

With mapping

Without mapping

Two threads
executing

POOMA / SMARTS

May 9, 2001 NERSC DOE ACTS Workshop

With and Without Mapping (Thread 0)

Thread 0 blocks
waiting for iterates

Without mapping

With mapping
Iterates get lumped together

Iterates distinguished

May 9, 2001 NERSC DOE ACTS Workshop

With and Without Mapping (Thread 1)

Without mapping

With mapping

Iterate performance mapped
to array statement

Array initialization performance
correctly separated

Array initialization performance lumped

Performance associated with ExpressionKernel object

May 9, 2001 NERSC DOE ACTS Workshop

TAU Profiling of SMARTS Scheduling

Iteration
scheduling
for two array
expressions

May 9, 2001 NERSC DOE ACTS Workshop

SMARTS Tracing (SOR) – Vampir Visualization

r SCVE scheduler used in Red/Black SOR running on
32 processors of SGI Origin 2000

Asynchronous,
overlapped
parallelism

May 9, 2001 NERSC DOE ACTS Workshop

TAU and PAPI (NAS Parallel LU)

r SGI Power Onyx (4 processors, R10K), MPI

r Floating point
operations

r Cross-node
full / routine
profiles

r Full FP
profile for
each node

r Counts in
place of time

Percentage
profile

May 9, 2001 NERSC DOE ACTS Workshop

TAU and PAPI (Matrix Multiply)

r Data cache miss comparison,

r “regular” vs. “strip-mining” execution

r 512x512
32 KB (P)
2 MB (S)

r Regular
causes
4.5 times
more
misses

May 9, 2001 NERSC DOE ACTS Workshop

Virtual Machine Execution (Java)

r Profile and trace Java (JDK 1.2+) applications

r No need to modify Java source, bytecode, or JVM

r Implemented using JVMPI (JVM profiling interface)
¦ Fields JVMPI events

r Executes in memory space of JVM
¦ Profiler agent loaded as shared object

r Usage (SciVis, NPAC, Syracuse University)
% ./configure -jdk=<dir_where_jdk_is_installed>

% setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH\:<taudir>/<arch>/lib

% java -XrunTAU svserver

May 9, 2001 NERSC DOE ACTS Workshop

TAU Profiling of Java Application (SciVis)

Profile for each
Java thread Captures events

for different Java
packages

May 9, 2001 NERSC DOE ACTS Workshop

Java Tracing (SciVis) – Vampir Visualization

Performance groups
Timeline display

Parallelism view

May 9, 2001 NERSC DOE ACTS Workshop

Vampir Dynamic Call Tree View (SciVis)

Per thread call tree

Annotated performance

Expanded
call tree

May 9, 2001 NERSC DOE ACTS Workshop

Using TAU with JAVA

r For Profiling

% configure -jdk=/usr/local/packages/jdk

% make clean; make install

% setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH\:/usr/tau-2.x/solaris2/lib

% java -XrunTAU java_app

% racy

r For Tracing

% configure -jdk=/usr/local/packages/jdk -TRACE

% make clean; make install

% java -XrunTAU java_app

% tau_merge *.trc app.trc; tau_convert -vampir app.trc tau.edf app.pv

% vampir app.pv

May 9, 2001 NERSC DOE ACTS Workshop

Hybrid Parallel Computation (Java + MPI)

r Multi-language applications and hybrid execution
¦ Java, C, C++, Fortran
¦ Java threads and MPI

r mpiJava (Syracuse, JavaGrande)
¦ Java wrapper package with JNI C bindings to MPI routines

r Integrate cross-language/system performance technology
¦ JVMPI and Tau profiler agent
¦ MPI profiling interface - link-time interposition library
¦ Cross execution mode uniformity and consistency
Ø invoke JVMPI control routines to control Java threads
Ø access thread information and expose to MPI interface

r “Performance Tools for Parallel Java Environments,” Java
Workshop, ICS 2000, May 2000.

May 9, 2001 NERSC DOE ACTS Workshop

JVMPI

Thread API

Event
notification

TAU Java Instrumentation Architecture

Java program

TAU package mpiJava package

MPI profiling interface

TAU wrapper

Native MPI library

Profile DB

JNI

TAU

May 9, 2001 NERSC DOE ACTS Workshop

Parallel Java Game of Life (Profile)

r mpiJava
testcase

r 4 nodes,
28 threads

Node 0

Node 1

Node 2

Thread 4 executes
all MPI routines

Merged Java
and MPI event
profiles

May 9, 2001 NERSC DOE ACTS Workshop

Parallel Java Game of Life (Trace)

r Integrated event tracing

r Merged
trace viz

r Node
process
grouping

r Thread
message
pairing

r Vampir
display

r Multi-level event grouping

May 9, 2001 NERSC DOE ACTS Workshop

Hybrid Parallel Computation (OpenMP + MPI)

r Portable hybrid (mixed model) parallel programming
¦ OpenMP for shared memory parallel programming
Ø fork-join model

Ø loop level parallelism

¦ MPI for cross-box message-based parallelism

r OpenMP performance measurement
¦ Interface to OpenMP runtime system (RTS events)

¦ Compiler support and integration

r 2D Stommel model of ocean circulation
¦ Jacobi iteration, 5-point stencil

¦ Timothy Kaiser (San Diego Supercomputing Center)

May 9, 2001 NERSC DOE ACTS Workshop

OpenMP + MPI Ocean Modeling (Trace)

Integrated
OpenMP +
MPI events

Thread
message
pairing

May 9, 2001 NERSC DOE ACTS Workshop

OpenMP + MPI Ocean Modeling (HW Profile)

% configure -papi=../packages/papi -openmp -c++=pgCC -cc=pgcc
-mpiinc=../packages/mpich/include -mpilib=../packages/mpich/libo

FP
instructions

Integrated
OpenMP +
MPI events

May 9, 2001 NERSC DOE ACTS Workshop

Program Database Toolkit (PDT)

r Program code analysis framework for developing
source-based tools

r High-level interface to source code information

r Integrated toolkit for source code parsing, database
creation, and database query
¦ commercial grade front end parsers

¦ portable IL analyzer, database format, and access API

¦ open software approach for tool development

r Target and integrate multiple source languages

r http://www.acl.lanl.gov/pdtoolkit

May 9, 2001 NERSC DOE ACTS Workshop

PDT Architecture and Tools

May 9, 2001 NERSC DOE ACTS Workshop

PDT Components

r Language front end
¦ parses a C, C++, F77/F90 (soon), Java (next year)
ØEdison Design Group (EDG): C, C++, Java

ØMutek Solutions Ltd.: F77, F90

Ø academic license allows derivative tool distribution

¦ creates an intermediate-language (IL) tree

r IL Analyzer
¦ processes the intermediate language (IL) tree

¦ creates “program database” (PDB) formatted file
Ømore easily read by program or scripting language

May 9, 2001 NERSC DOE ACTS Workshop

PDT Components (continued)

r DUCTAPE (Bernd Mohr, ZAM, Germany)
¦ C++ program Database Utilities and Conversion Tools

APplication Environment

¦ processes and merges PDB files

¦ C++ library to access the PDB for PDT applications

r Sample Applications
¦ pdbmerge : merges PDB files from separate analyses

¦ pdbconv : converts PDB files to more readable format

¦ pdbtree : prints file inclusion, class hierarchy, and
call graph information

¦ pdbhtml : ”HTMLizes" C++ source

May 9, 2001 NERSC DOE ACTS Workshop

PDT and TAU Instrumentation

r Manual source instrumentation
¦ time consuming and error prone

r Automatic source instrumentation
¦ need function and method signature

¦ need parameter type information

¦ need source file and line information

¦ generate instrumentation statement

¦ insert instrumentation in source file

r Use PDT to create/access program code information

r Develop instrumentation tool

May 9, 2001 NERSC DOE ACTS Workshop

PDT Summary

r Program Database Toolkit (Version 1.2)
¦ EDG C++ Front End (Version 2.41.2)

¦ C++ IL Analyzer and DUCTAPE library

¦ tools: pdbmerge, pdbconv, pdbtree, pdbhtml
¦ standard C++ system header files (KAI KCC 3.4c)

r Fortran 90 IL Analyzer in progress

r Automated TAU performance instrumentation

r Program analysis support for SILOON (ACL CD)

r “A Tool Framework for Static and Dynamic Analysis
of Object-Oriented Software” (SC 2000)

May 9, 2001 NERSC DOE ACTS Workshop

TAU Distributed Monitoring Framework

r Extend usability of TAU performance analysis

r Access TAU performance data during execution

r Framework model
¦ each application context is a performance data server

¦ monitor agent thread is created within each context

¦ client processes attach to agents and request data

¦ server thread synchronization for data consistency

¦ pull mode of interaction

r Distributed TAU performance data space

r “A Runtime Monitoring Framework for the TAU
Profiling System” (ISCOPE ‘99)

May 9, 2001 NERSC DOE ACTS Workshop

TAU Distributed Monitor Architecture

r Each context has a monitor agent

r Client in separate
thread directs agent

r Pull model of
interaction

r Initial HPC++
implementation

TAU profile database

May 9, 2001 NERSC DOE ACTS Workshop

Java Implementation of TAU Monitor

r Motivations
¦ More portable monitor middleware system (RMI)

¦ More flexible and programmable server interface (JNI)

¦ More robust client development (EJB, JDBC, Swing)

May 9, 2001 NERSC DOE ACTS Workshop

r Execution event triggering
¦ Inform external clients of events during execution

r “Server” library
¦ Java trigger modules

¦ JNI link between application and trigger modules

r “Client” trigger library

Trigger Support for Runtime Monitoring

Application
Context Triggers

…

Application
JNI

Client

Client

Client
RMI

May 9, 2001 NERSC DOE ACTS Workshop

Trigger API and TAU Monitor Application

r Trigger at points of desired monitor access

r Pull TAU profile data

r Unblock trigger and continue

May 9, 2001 NERSC DOE ACTS Workshop

TAU Future Plans

r Platforms
¦ IA-64, Compaq, Itanium, Sun Starfire, IBM Linux, ...

r Languages
¦ OpenMP, Java (Java Grande), Opus / Java

r Instrumentation
¦ Automatic (F90, Java), DynInst, DITools

r Measurement
¦ Extend tracing support to include event data (e.g., HW counts)
¦ Dynamic performance measurement control

r Displays
¦ Extensible Performance Display Tool (ExPeDiTo)
¦ TraceView 2 (TV2), Pajé

r Performance database and technology
¦ Support for multiple runs
¦ Open API for analysis tool development

May 9, 2001 NERSC DOE ACTS Workshop

Conclusions
r Complex parallel computing environments require

robust and widely available performance technology
¦ Portable, cross-platform, multi-level, integrated

¦ Able to bridge and reuse existing technology

¦ Technology savvy and open

r TAU is only a performance technology framework
¦ General computation model and core services

¦ Mapping, extension, and refinement

¦ Integration of additional performance technology

r Need for higher-level framework layers
¦ Computational and performance model archetypes

¦ Performance diagnosis

